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Introduction

One of the more lamentable results of the information processing
revolution within psychology over the past twenty years has been the
replacement of the term learning by the term memory. Whereas it is
sometimes difficult to distinguish the learning experiments of twenty
years ago from today's memory experiments, it is increasingly clear that
remembering is only one kind of learning. As long as our theories of
knowledge representation were simple, this substitution caused no prob-
lem. If knowledge is essentially declarative and unstructured, new
learning can be carried out by simply adding new facts to the data base.
Over the past several years, however, we have been led to a signifi-
cantly more complex representational theory. In particular, we have
come to see knowledge as embedded in schemata which we see as largely
composed of specialized bits of procedural knowledge (c.f. Bobrow & Nor-
man, 1975; Rumelhart & Ortony, 1977: Rumelhart, in press). In a recent
paper CRumelhart and Norman, 1978), we began a logical analysis of what
learning must amount to in the context of a schema based representa-
tional system. According to our analysis, the adoption of the schema as
the basic unit of knowledge representation has implicit in it three
qualitatively different kinds of learning. These are:

(1) Accretion-- the encoding of new information in terms of exist-
Ing schemata. On our view, new information is interpreted in
terms of relevant preexisting schemata and some trace of this
interpretation process remains after the processing is com-
plete. This trace can serve as the basis for a later recon-
struction of the original input. Thus, processing information
changes the system, giving it the ability to answer questions
it could not have previously answered. The system has thereby
learned something new. This is presumably the Most common and
least profound sort of learning. Note, that no new schemata
are involved in this sort of learning. An organism which
learned only in this way could never gain any new schemata;
all learning would be in terms of instantiations of already
existing schemata.

(2) Tuning or Schema Evolution- the slow modification and refine-
ment of a schema as a function of the application of the
schema. Schema evolution is presumably a central mechanism in
the development of expertise. With experience, an existing
schema can be slowly modified to conform better and better to
the sorts of situations to which it is to apply.

(3) Restructuring or Schema Creation-- the process whereby new
schemata are created. This kind of learning, which we have
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called restructuring, or more recently Simply structuring,
involves the creation of new schemata which, through tuning,
can themselves become highly refined and distinct concepts.

Our models of memory are thus models of learning by accretion.
Many such models exist. It is substantially more difficult to create

2 models of learning of the other two types. Therefore, we have begun to
focus our attention on the processes of schema creation and schema evo-
lution. In this paper, we report some of the theoretical and empirical
approaches we have taken to the study of schema creation. We begin with
a discussion of knowledge representation and show why we believe learn-
ing to be central and why we believe analogy is such an important
mechanism of learning. Then, we will describe a simple model of how new
schemata might be formed by analogy. Finally, we describe an empirical
situation in which we think we find evidence for such learning and show
how our model might generate the results we have observed.

Some Characteristics of the Human Knowledge Representation System

Since the issue of knowledge representation has played a central
role in our thinking about learning, it is useful to begin our discus-
sion with a few observations on some of important characteristics of
knowledge representation. It is, of course, cliche that it is impossi-
ble to evaluate a representational system apart from the process which
operates on it. Consequently, in modeling any cognitive process, there
is always the problem of deciding how to partition that part of the
knowledge system which is "process" from that part which is "data."
Depending on the relative amounts of the system allocated to "process"
and to "data", we have what Winograd (1975) has called "procedural" or
"declarative" representational systems. Some authors have emphasized
the "data", trying to have as few special purpose procedures as possi-
ble; such a system is called declarative. Others have emphasized the
processes involved and have largely embedded the knowledge of the system
within these processes. These systems are generally called procedural.
The issues involved in choosing one or the other of these strategies has
been described by Winograd as the "declarative-procedural controversy."
In his paper on this topic, Winograd (1975) offered a useful analysis of
the topic. We summarize the issues briefly below.

On the one hand, there are facts. It is often quite convenient to
conceptualize the contents of memory as a set of facts and to imagine
retrieval from memory to be the application of general, content free
retrieval processes. With this view, reasoning can be conceptualized as
the production of inferences based on these facts. Of course, a
representational system such as this requires rules of inference
separate from these "facts", but these rules are conceptualized as very
general and in no way tied to the specific content of the facts to which
they apply. Here, the best analogy is between the axioms and theorems
of a mathematical system on the one hand (the facts) and the rules of
inference of that system on the other (the processes). Once the rules
of inference are specified, the axioms can be changed at will and the
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system will still continue to produce correct inferences.

On the other hand. there are operations. It is often convenient to
construct special purpose procedures which have special knowledge of the
various contingencies of Use built into them. All systems must have
some operations. Procedurally based systems consist primarily of such
special operators.

In his comparison of these two representation types, Winograd notes
four basic characteristics on whicn the two kinds of representational
systems typically differ.

(1) Flexibility. Within a declarative system, the same fact can
be used whenever it is relevant. Once a fact is added to the
data base, it is available for use by any of the inference
rules. In a procedural system, with knowledge contextually
embedded, relevant information may be known but not available.
Because it is stored implicitly, as part of a procedure,
independent access to the knowledge is impossible. In a
declarative system, on the other hand, knowledge does not have
to be specified differently for each context in which it may
be needed.

(2) Learnability. It is easy to add new information to a declara-
tive system. A new statement (or axiom) or even an entirely
new domain of knowledge can be added to the data base and new
inferences automatically become possible without the addition
of any new rules of inference. In procedural representations,
the procedures are generally hand crafted by the theorist and
it is difficult to see how new procedures could be evolved.
Moreover, since what is general and what is specific about
procedural representations are not often easily separated,
there is little or no transfer from one domain to another. In
short, the process whereby new knowledge is added to procedur-
ally based systems is enormously more difficult than adding
new knowledge to declarative systems.

(3) Accessibility. Knowledge separated out in the form of a set
o discrete statements is relatively easy to find and express

a isolated entities. Knowledge stored in a more procedural.
context dependent fashion is impossible to separate from the
contexts in which It is employed. Knowledge which is rela-
tively easy to express is taken to be stored declaratively
whereas knowledge which is known only tacitly is taken to be
procedural.

(4) Efficiency. Procedural representation systems have the advan-
tage of efficiency. With general inference rules, care must
be taken to "handle" even the most obscure cases. With pro-
cedural representations, however, specific aspects of the
problem domain can be taken directly into account in the pro-
cedures. It is therefore possible to employ heuristics which



Rumeihart & Norman Analogical Processes

4

might fail in general, but work in specific cases. This
allows for the very direct solution of problems for which the
system is best tuned but perhaps no solutions at all for prob-
lems outside that domain. In practice, the ability to "get
away with" limited but efficient solutions makes it much
easier to specify a knowledge system that works at all.

In many ways it seems that humans have more of the characteristics
attributed to procedural systems than those attributed to declarative
ones. Our ability to reason and otherwise use our knowledge appears to
depend strongly on the context in which that knowledge is required.
Most of the reasoning we do apparently does not involve the application
of general purpose reasoning skills. Raither, it seems that most of our
reasoning ability is tied to particular bodies of knowledge.

Perhaps the classical case of using knowledge how (procedural
knowledge) to produce knowledge that (factual knowledge) occurs in the
domain of grammatical judgements. The knowledge that we have about
language seems to be largely embedded in the procedures involved in the
production and comprehension of linguistic utterances. This is evi-
denced by the relative ease with which we perform these tasks when comn-
pared with our ability to explicate the knowledge involved in them.
Semantic knowledge would appear to be the same. Whereas we can quickly
interpret sentences, it is only with the most painstaking effort that we
can produce definitions of terms with any generality.

Perceptual knowledge is even more plausibly viewed as knowledge
how. Whereas we all know a dog when we see one, it is very difficult to
sort out exactly what we look for in making our judgement. We know
how to tell a dog without knowing how we know it. Similarly, we know
how to perform many skills (e.g. playing tennis), but it is rather dif-
ficult to access the facts on which this knowledge is based. Thus, it
seems useful to imagine knowledge such as this to be in the form of pro-
cedures or programs for doing these activities. The knowledge that we
have is implicit--somehow tied up in the operations in which we actually
use that knowledge.

One nice demonstration of this comes from the work of Wason and
Johnson-Laird (1972) and some more recent replications and extensions of
their work carried out by Roy D'Andrade. 1 Subjects in D'Andrade's
experiments were given one of two formally equivalent problems to solve.
Half of the subjects were given the task illustrated in the left portion
of Figure 1. Subjects were shown the four cards illustrated in the Fig-
ure and told that:

All labels made at Pica's Custom Label Factory have a letter
printed on one side, and a number printed on the other side.

1. Roy D'Andrade has kindly given Us access to the data from his as yet
unpublished experiment.
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It vowel, then odd on back. If total'> $30.00, then sign back.

1)2) 1) SEARS 2) SEARS

Total 05Awtoved

3) 4) 3) SEARS 4) SEARS

7 E Ilamnp C5P

Tota $.600 Aprovd.L.

Figure 1. Stimuli for the two conditions of D'Andrade's reasoning
* experiment. The left panel shows the stimuli for Label Factory condi-

tion. The right panel shows the stimuli for Sears store condition.
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piece of new knowledge. Rather, we carefully instruct the child using
the knowledge already tacitly available to "get across" the concept in
question.

Consider, for example, how we teach children the concept of a frac-
tion. Most curricula use the "pie" analogy. One half corresponds to
one piece of a pie which has been cut down the middle. One fourth
corresponds to one piece of a pie cut into four equal pieces, etc.
Here, the teacher is taking advantage of the child's spatial intuitions
to teach the abstract notions of a fraction. This analogy is very use-
ful; upon learning it, the reasoning and problem solving strategies
implicit in his knowledge of "pies," operations that can be performed on
them etc., can be carried over into this abstract domain. The child can

* see that two quarters make a half, that if you have a whole and take
away one quarter, you have three quarters remaining etc. The child
needn't know how he knows this. These inferences are simply implicit in
the analogy.

However, as with all analogies, the analogy is not perfect. Some-
times operations are required in the target domain (in this case with
fractions) which are difficult or unnatural within the domain of the
analogical source. Thus, whereas addition and subtraction of fractions
is natural within the "pie" analogy, multiplication and division of
fractions is unnatural and difficult to conceptualize. How do you take
one piece of pie times another, or worse yet, how do you divide one
piece of pie into another.

Fractions are sometimes taught through a different analogy. Once a
child has learned multiplication and division, fractions can be under-
stood as operations. A fraction is a compound operation. A fraction is
merely a multiplication and a divide. Thus, one half of a number is
that number multiplied by one and divided by two. Similarly, three
fourths of a number is that number multiplied by three and divided by
four, etc. Those taught by the operation method find the multiplication
and division of fractions a very natural extension of their conceptuali-
zations. One can, of course, readily do a "multiply and divide" of a
fraction and produce a new fraction. These children, however, often
find addition and subtraction of fractions very difficult. How do you
add one "multiply and divide" to another?

Thus, depending on which of the two systems of analogies are tapped
by the curriculum in question, the sorts of difficulties a child will
have is predictable. If a child is taught through the "pie" analogy, he
or she finds the addition and subtraction of fractions relatively
natural. These are operations carried rather directly from the original
"pie" domain. Multiplication and division of fractions, on the other
.hand, are often very difficult for these children.

Here again, it appears, that knowledge of fractions is best not
thought of as a list of facts, but rather as a set of procedures we have
learned. Moreover, these procedures are apparently not created de novo,
but are generated through a systematic mapping of prior, often only
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implicitly known, knowledv'. Curriculum developers are always on the
lookout for 'he perfect analogy. The perfect analogy is one in which
the lpacner is already able to reason within the source domain with ease
and in which all of and only the operations of the target domain are
represented in the source domain. Needless to say, such domains are
rare. Two kinds of diagnostic problems often arise. First, learners
will have great difficulty in learning operations not implicit in the
original source domain. This is illustrated by the example above.
Secondly, learners will often carry features of the source domain
incorrectly into the target domain. We will discuss an example of this
later. Both of these examples are useful to the analyst for it is
through these kinds of errors that we can find evidence of the analogi-
cal nature of the learning.

As yet another example of using knowledge how to derive knowledge
that, consider the task of remembering the number of windows in your
house. Most people report systematically "going through" the rooms in
their house and "counting the windows". Clearly, in these cases, the
knowledge of our windows is implicit in another body of knowledge. We
can, however, derive this implicit knowledge by using our ability to
imagine the rooms of our house systematically. Note, we know how to
imagine the rooms of our house and make use of that ability to know that
we have so and so many windows in our house. 2

To push this view perhaps harder than it ought to be pushed, it may
well be that we "know" the alphabet by virtue of our knowing how to
recite It. Although this may seem silly at first glance, it is cer-
tainly plausible that we "know" the identity of the letter before the
letter before 'k' by virtue of our ability to recite the alphabet.

The human system does differ from existing procedural systems in
one important way, however. The human system is notoriously adaptive.
We are capable of applying knowledge learned in one domain to another;
we are capable of readily learning new concepts and modifying old ones.
Mimicking this flexibility has been the major problem for the procedural
representational systems. It has proved rather difficult to build
moderately general self modifying procedures.

For the past several years, we have been involved in the develop-
ment of a representational system which combines the important aspects
of the procedural and declarative structures in somewhat different ways
(c.f. Rumelhart & Norman, 1973; Norman, Rumelhart & LNR, 1975).In our
representational system, dubbed the Active Semantic Network, we have

combined the declarative advantages of semantic networks with the pro-
cedural convenience of LISP-like languages. We developed a representa-
tional system in which a LISP-like interpreter operates directly on
semantic networks (rather than lists) to perform its operations. In

2. Note, this example has occasionally been used to demonstrate the
visual characteristic of our knowledge. It would seem to better illus
trate how much of what we "know" is embedded in what we can "do."
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this system, procedures are encoded as configurations of links in a
semantic network. Whenever we treat a piece of network as a procedure,
we employ a general interpreter which produces various outputs and
modifications of the network. During these times, the f.ict that the
procedures are themselves encoded in the network is irrelevant. These
procedures could equally well be entirely external to the d-:ta base.
However, since the procedures are encoded in the data base, they can, on
occasion, be interrogated by other procedures. This allows procedures
to be modified, retrieved, compared, deleted and otherwise operated on
as only declarative data normally can be.

Although this conception has been a part of our representational
system for some time, in practice (like most LiSP structures) pieces of
semantic net have either always been treated as data or have always been
treated as procedures. The one exception to that was the work of Scragg
(1975) who proposed a system that "looked through" a set of procedure
definitions in order to answer hypothetical questions about what might
happen if certain of those procedures were carried out.

In our recent work, we have leaned more and more heavily on the
procedural view of our data structures, and the fact that they can also
be viewed as semantic networks has been less and less important. We
have argued that schemata (c.f. Rumelhart & Ortony, 1977; Rumelhart P
Norman, 1978) are procedures which scan the input for information
relevant to whether aspects of the input could represent instances of
the concept represented by the schema. In doing this, the internal
structure of the schema is irrelevant. The important question has been
the operation of the ;chema, not its internal structure.

The internal structure of the knowledge representation is important
when old knowledge must be applied Lo domains beyond that. which it was
originally designed to represent, when new knowledge must be assimilatod
and when pieces of knowledge must be compared. In short, it is under
these conditions that the purely procedural perspective is inadequate
and the knowledge must be viewed declaratively. We believe that the
most common way in which people apply knowledge learned in one domain to
another one is through analogical reasoning. We believe that the border
between the procedural perspective and the declarative perspective can
be usefully spanned by developing a mechanism for specifying new pro-
cedures based on the structure of old ones.

New Schemata by Analogy with Old

We thus propose a representational system in which all of the data
can be viewed as either data or process. Such a system captures many
facts about human knowledge in a natural way. We propose that all
knowledge is properly considered as knowledge how but that the system
can sometimes interrogate this knowledge how to produce knowledge that
The means whereby this knowledge is extended is, we believe, best viewed
as an analogic process similar in form to that proposed by Moore and
Newell (1973). Just as new concepts in MERLIN are defined as old ones
with certain specified differences, one can define new schemata as
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sy temat.ic modifications on old ones.

The ba:'ic scheme whereby this may be done can be illustrated in
terms of some very simple examples. Imagine that our knowledge of' how
to draw a square were embedded in the following simple turtle geometry
,r'ogram for drawing a square:

de!ine square(:x)
loop(4, &(forward(:x),right(90)))

This procedure would be represented within our Active Semantic Networks
'13 snown in Figure 2. In this representation, terminal nodes represent
either constants or variables whereas non-terminal nodes represent sub-
procedure names. Each branch on a tree represents an argument of a pro-
cedure. The left-most branch represents the first argument, the right-
most one the last argument. Intermediate branches represent intermedi-
ate arguments. It is useful to observe that along with the conceptually
important concepts of there being four sides and that the angles are 90
degrees, there are a number of "technical" aspects of the procedure
needed in order to make it actually work out and be properly interpreted
by the interpreter. In particular, there is LOOP which counts out the
number of sides, there is the "&" which combines FORWARD and RIGHT into

single argument for LOOP.

This program successfully draws squares, and for most purposes the
fact that it has the particular internal representation that it does
makes no difference. It represents a kind of "knowledge how." Now
consider what a similar sort of program to draw a pentagon might be
like.

define pentagon(:x)

loop(5,&(forward(:x),right(72))).

Figure 3 shows the network representation of this procedure. A compari-
son of figures 2 and 3 shows the similarity of structures of these two
procedures. Note that all of the basic bookkeeping and technical
aspects of the two procedures are identical. They differ only in the
fundamental ways pentagons and squares differ, that is, in terms of the
number of sides (five instead of four) and of the angles through which
the turtle must turn in order to draw the figure (72 instead of 90
degreus). It should be clear that this new procedure, the pentagon pro-
cedure, could readily be made by copying the structure of the square
procedure and replacing the constant 4 by the constant 5 and the con-
stant 90 by the constant 72. We see this as the fundamental process of
learning by analogy, taking one schema and creating another one identi-
r,] to it except in specified ways.
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SQUARE

loop

4 &

forward right

:x 90

Figure 2. The Active Semantic Network representation of SQUARE, P

procedure for drawing squares. Terminal nodes represent either con-
stants or variables. Nonterminals written in ovals are subprocedure
names. Arcs represent the arguments of the subprocedures.
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PENTAGON

loop

5 &

forward right

:x 72

Figure 3. Active Semantic Network representation of' PENTAGON,
pr-ocedure for drawi ng pentagons.
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We have implemented this process within our computer simulation program

with a program we call IS-LIKE. The statement:

pentagon is-like "square" with 5 for 4 and 72 for 90.

rau.i , the program pentagon to be created. It is important that ;l of

the hand-crafted aspects of SQUARE are automatically brought into the
structure of PENTAGON without any need for special knowledge of what

these structures are. Of course, the same procedure could readily b.

applied to generate an OCTAGON or any other regular polygon we might
wish. In fact, the statement

regular-polygon is-like "square" with :n for 4 and ratio(360 to :n)

for 90.

will generate the structure illustrated in Figure 4 which will draw any

regular polygon. In general, the "is-like" program can generate any new
procedure in which every occurrence of a particular constant or vari-

able is replaced by another constant, another variable, or a subnetwork
or in which every occurrence of a particular subprocedure is replaced by

another. This last point is illustrated in the following discussion.

Note that the PENTAGON and the SQUARE procedures are completely

distinct; changes made in SQUARE after PENTAGON has been generated will
not be transfered to PENTAGON. However, the lineage of PENTAGON remainn

in the incidental aspects of the way it draws its pentagon. In particu-

lar, both SQUARE and PENTAGON construct their respective figures in a

clockwise fashion, turning right at every corner. If it were important.
we could readily create a LEFT-SQUARE which generates it's figure in thE

opposite direction by replacing the occurrences of the subprocedure

RIGHT with the subprocedure LEFT. Thus, the statement:

left-square is-like "square" with "left" for "right".

will create a procedure which draws its figure in a counter clockwise

direction. The network representation for LEFT-SQUARE is identical to

SQUARE except that the non-terminal node for RIGHT is replaced by one
for LEFT.

There are additional aspects of this scheme of creating new schf-

mata through analogy to old ones which require a somewhat richer domain

to illustrate. Thus, consider the domain of kinship relations. Imagine

a system in which the basic kinship relations are stored in a network
like the one illustrated in Figure 5. It is possible to represent all

of the possible kinship relations of English in terms of the five basi-
relations illustrated in the figure--namely, "child", "parent",
"spouse", "male", and "female". The figure is supposed to represent the

fact that "Mary" is the daughter of "Alice", that "Maggie" is the grand-

mother of "Alice" and that "Alice" and "Henry" are married.
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REGULAR-POLYGON

loop

:n &

forward right

ratio

360 :n

Figure 14. Network representation for REGULAR-POLYGON, a procedure
for drawing a regular polygon.
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female
e e Kinship Network

Maggie

parent
child

malespouse femalemalec) "-- .'
Henry umce.

parent parent

child

Mary

female

Figure 5. An example of a piece of a network encoding knowledge

about kinship relations. The network consists of a set of nodes

representing people and a set of arcs representing the basic relation
ships among people. Only three different arc types are required to

represent the kin relations and two to represent the sex of the indivi-
duals. These are CHILD, PARENT, SPOUSE and MALE and FEMALE, respective-
ly. Special procedures can then be defined to operate on such a network

to determine the kinship relation which holds among any two individuals

in such a network.



Rumeihart &Norman Analogical Processes
16

Now consider, as an example, the following procedural definition of a
function which produces as its result the set of all parents of indivi.-
dual :x.

define parent(:x)
return nodeset with "child" to :x.

This function merely returns, as a result, the set of nodes which have a
pointer labeled "child" to node :x. The network representation of this
procedure is given in Figure 6. One could then define "child" by anal-
ogy with "parent",

child(x) is-like "parent" with "parent" for "child".

The appropriate definition of "child" is then constructed by creating a
new function which is a copy of the old, except that for every
occurrence of "child" in the original, the term "parent" is put in its
place. This would produce a function which would return the set of
nodes accessible through the pointer "parent." In the framework illus-
trated in Figure 5, this would be a correct procedure for producing the
set of children for some individual :x. Now the procedure NODESET is
defined so that if the variable :x is filled by a set of nodes, rather
than by a node for a single individual, it will generate a set which
contains all of the nodes that can reach any of the nodes in question
through the named pointer (e.g. "parent" or "child"). Thus, the func-
tion FEMALE defined by analogy with PARENT as:

female is-like "parent" with "female" for "child".

will return a set containing those elements of its argument set which
represent a female. Thus, we can define MOTHER as

define inother(:x)
return female parent :x.

Then, assuming the functions MALE and SPOUSE (which could, of course, be
defined by analogy with FEMALE), we could create the functions. FATHER,
SON, DAUGHTER, GRANDPARENT, etc. by using the following analogies.
These procedures can be created by noting the following relationships:

father is-like "mother" with "male" for "female".

son is-like "father" with "child" for "parent".

daughter is-like "son" with "female" for "male".

grandparent is-like "parent" with parent(:x) for :x.

With a little care. procedures to produce the entire set of English kin-
ship terms can be readily constructed, by analogy, from two basic pro-
cedures.
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PARENT

return

nodeset

child :x

Figure 6. Network representation for PARENT. The function NODESET
takes two arguments, an arc name (in this case "child") and a set of in--
dividuals (in this case the variable :x). It then returns as a result
the set of nodes in the data base which have the specified are pointing

to any of the set :x.
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One interesting observation to be made about the procedures thus created
is that there are a number of possible analogies which will create pro-
cedures which carry out the same task, but, depending on the particular
analogies used, different ways of computing the same things will be
employed. For example, we could say that:

grandmother is-like "mother" with "grandparent" for "parent".

or we could say:

grandmother is-like "mother" with parent(:x) for :x.

These two ways of defining GRANDMOTHER correspond to two conceptions of
a grandmother, one in which grandmother is conceived of as the female of
the grandparents as the mother is the female of the parents, and another
in which she can be conceived as one who differs from a mother by being
the parent not of the individual in question, but of the parent of that
individual. The network representations of these two different GRAND-
MOTHER procedures as shown in Figure 7. It may well be that not only
are analogies important in the initial teaching of a concept, but they
may also be useful for teaching alternate conceptualizations. It may
well be that this is a primary role of metaphor.

In all of our examples so far, we have assumed that the relevant
dimensions of modification were already known to the system. In gen-
eral, of course, we do not know the relevant dimensions of comparison.
It is to point out the relevant dimensions that four term analogical
relations are important. Consider the following four term analogy:

grandfather is-to "grandmother" as "father" to "mother".

This statement will cause a new GRANDFATHER procedure to be created in
the following way: first the structures for FATHER and MOTHER are com-
pared and their differences are found. In this case, they differ only
in that where MOTHER uses the procedure FEMALE, FATHER uses the pro-
cedure MALE. This set of differences can then be applied, through the
IS-LIKE mechanism, to GRANDMOTHER, finally creating FATHER. Note that
this procedure will work whichever of the conceptualizations of GRAND-
MOTHER had been chosen.

In general, this process of matching pairs of procedures to find
their differences is very similar to the matching processes in MERLIN
and, like MERLIN, is generally not deterministic. Depending on exactly
how the differences between pairs of procedures are characterized, many
different mapping functions can be found. Each of these mapping func-
tions represent a way of characterizing the difference between a pair of
procedures. If, like this example, the original procedures are rather
close together, the process of extracting differences will be relatively
straight forward . In other cases, for example the difference between
MOTHER and SQUARE, the differences will be relatively complex, and an
analogy probably cannot usefully be drawn between them.
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Of course, the examples discussed above are not intended to
represent the particular knowledge about squares, parents, or
grandparents that people actually have. Rather, they are intended as
mere demonstrations of the sorts of processes which can be employed to
create new schemata from old ones. Once created, the new schemata no
longer depend on the schemata from which they were spawned, but are
full-fledged procedures in their own right with all of the features of
procedurally represented knowledge. Nevertheless, a number of schemata,

all spawned in different ways from the same schema, will share a good
deal of common structure, and it is possible to compare pairs of them to
find the pattern of modifications required to get from one to the other.
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Analogical Extensions of Lexical Meanings

We believe that the sort of processes outlined above play an impor-
tant role in our learning of new concepts. It seems especially
interesting to consider some of the analogies which can be drawn among
the meanings of various classes of verbs. It appears that often, as
with the analogy involving "son" and "daughter", relatively simple
differences occur among verbs which are consistent with the idea that
verb meanings may have been generated by analogy from a few basic under-
lying verb types.

In the language comprehension system we built in our Active Seman-
tic Network formalism, Rumelhart and Levin (1975) showed how a simple
procedural definition could be given to various verbs such that these
verbs, when encountered in a text, would determine whether the facts (or
some part of the facts) being communicated by the verbs were already
known. If not, they would create a memory representation of the
relevant facts and inferences. One of the verbs we defined was the verb
"move" (intransitive sense). We suggested that move could be defined
roughly as follows:

define move(:x,from :y to :z)
means change(from loc(:x,:y), to loc(:x,:z)).

Similarly, we defined the verb "get" to be roughly:

define get(:x,:y,from :z)
means change(from possed-by(:y,:z) to possed-by(:y,:x)).

It can be seen that "get" can easily be from "move" by the analogy:

get is-like "move" with "possed-by" for "lec" :x for :z, :y for :x
and :z for :y.

Jackendoff (1975) produced a rather interesting set of examples
illustrating large sets of verbs whose meanings are related in just the
same relatively simple sorts of ways as the familial relations. Thus,
for example, Jackendoff argued that the verb "keep" in the positional
sense (e.g. Bill kept the book on the desk.) and in the possessional
sense (e.g Bill kept the book.) differ in much the same ways we sug-
gested for "move" and "get". Jackendoff showed that a rather large
array of verbs and verb meanings could be related to one another by
relatively simple analogical relationships.

Analogical Processes in Learning a Text Editor

For several years now, we have, with several of our colleagues car-
ried out a series of studies aimed at understanding what we have called
"complex learning" (cf. Bott, 1978; Norman, Gentner & Stevens, 1976;
Norman (1975); Norman, 1978; Norman & Gentner 1978, Norman, 1980). We
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sought to study topics which required several hours, rather than several
minutes or several weeks to learn. We studied a variety of different
topics. Ultimately, we focused most of our attention on observing peo-
ple while learning to use a text editor.

The particular text editor available on our laboratory is the Ed
text editor available under the UNIX operating system. In our experi-
mental situation, we asked students to learn how to use the text editor
by actually using it, referring to an instructional manual for guidance.
In the examples that follow, we were using a very simple manual that we
wrote. The basic experimental situation is shown in Figure 8. The stu-
dent sat in the booth, typing material to Ed on a computer terminal.
The instruction manual was displayed to the student a paragraph at a
time on a second terminal. All keystrokes, along with their interstroke
intervals, were recorded by the computer. In addition, an observer sat
in the room with the student and occasionally asked questions or asked
the student to think aloud during portions of the learning period. Each
session was tape recorded.

An experimental situation such as this generates an enormous quan-
tity of data. We have analyzed numerous segments of the learning proto-
col. In this paper, we will focus on a typical example which illus-
trates how the sorts of analogical processes discussed in the previous
section show up in such learning situations. At the start, the Ed
screen was always blank except for a cursor. The student began by read-
ing a basic introduction to text editing on the instruction terminal.
Then, an attempt was made to teach the specific commands used by Ed.
Students were given the following instruction on the instruction termi-
nal:

You are going to learn how to print the text on the screen.

Type

3p

Type the key marked RETURN

Most students typed this sequence without difficulty, and the message
illustrated in Figure 9 appeared on the screen. The first line on the
screen is the command typed by the student (3p). The second line is the
resulting output from Ed, and the third line is the cursor.

We might imagine that as a result of this experience the student
would create an internal representation of the event similar to that
shown in Figure 10. Here we have a little procedure for printing text
line three-- pressing the keys 3 and p causes line 3 to be printed on
the screen.

The next part of the instruction manual was built on the following
statement:

Now try printing the fifth line.
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Figure 8. Basic experimental situation for observing students
learning Ed. The student sat in a booth before two computer terminals.
One terminal was used to give commands to Ed and carry out the text
editing task. The other terminal was used to instruct the students on
the editor and was controlled by a INSTRUCT, an interactive program for
teaching. All interaction with either Ed or INSTRUCT was monitored and
recorded by another program SPY. An experimenter sat in the booth with
the student and occasionally asked questions. All conversation was tape
recorded.
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3p

This is the third line of material in the buffer.

m

Figure 9. The contents of the terminal screen following a command
to type the third line of the text.

*1:
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PRINT-TEXT-3

p line screen

3

Figure 10. Representation of a procedure PRINT-TEXT-3 which we sup-
pose may have been created as a result of the instruction to print out
the third line of the text.
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Clearly, this statement requires that the student learn by analogy. We
can imagine that this command would be interpreted by the student as:

print-text-5 is-like "print-text-3" with 3 for 5.

This procedure would, of course, work and produce a procedure exactly
like that of figure 10 except for the 5 replacing the 3 in the figure.
Presumably, the student could also have made the inference from this
experience that

print-text is-like "print-text-3" with :n for 3.

This would produce the general program for printing any line of text
illustrated in Figure 11.

Somewhat later in the session, students were taught to understand
the "delete" comand. The text of the beginning of the lesson on
"delete" from the instruction manual for Ed is given below:

Suppose we want to get rid of extra lines in the buffer. This
is done by the delete command "d". Except that "d" deletes
lines instead of printing them, its action is similar to that
of "p".

This text is an invitation to build a structure for "delete" by analogy
with that for print. According to the model we have been discussing, we
might imagine that the student would interpret this as follows:

delete-text is-like "print-text" with "d" for "p and "delete" for
"print".

This would lead to the structure illustrated in Figure 12. There is
some evidence that our students actually constructed a schema similar to
this for delete.

---.- I
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PRI NT-TEXT

cause

Figure 11. Network representation of a procedure for printing out
any line of a text.
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DELETE-TEXT

cause

:n d l screen

:n

Figure 12. Network representation of procedure DELETE-TEXT which is
derived by analogy from the general PRINT-TEXT procedure.
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In one example, after receiving instruction on the deleting lines from a
buffer, the student was asked to delete line 14. At this time, the
screen contained a number of lines of text, including line 4. According
to the delete schema illustrated in the figure, the student should type
4id. This was done. However, the schema also predicted that line 4I
should be deleted from this screen. It was not. After typing "14d" and
seeing nothing happen. the student sat staring at the screen of the ter-
minal, and then looking back and forth from the instruction manual to
the screen. The experimenter, sitting in the experimental booth with
the student, asked the student to explain the problem:

Experimenter: What did you just do?

Student: I deleted line 4I, at least I was thinking I was delet-
ing line 4l.

Experimenter: What did you expect to happen?

Student: I expected line 14 to disappear, either that or the text
to be reprinted without line 4l in it.

Experimenter: Uh-huh, but that didn't happen.

Student: It didn't happen.

A common response of students was to assume that somehow or other
Ed didn't "notice" the command, so they typed 114d" once more. This
action invoked the delete command a second time, thereby eliminating in
the buffer the new line 4l, which used to be line 5.

Although this analysis fits rather neatly into the model we have
been describing, the situation is really more complex and points to
additional constraints on how students will create analogies. The error
cormmitted by the students was in part a result of their incomplete con-
ceptualization of the various parts of the computer system. They
reasoned that the screen was a sort of window on the computers
knowledge, so if a line was deleted from the computers memory, it should
no longer be visible on the screen. These same inferences did not occur
when the very same instruction manual and editor were used on a hard
copy terminal. Here the student's model of the relationship between the
paper and the computer's knowledge were very different. They found it
easy to see the paper as a medium on which the computer typed conmmanded

* messages. They knew the computer could not physically erase a line pre-
viously printed and thus interpreted the description of the delete com-
mand differently. The difference in the kinds of mental models that
students bring to the situation clearly play a critical role in the
kinds of analogies students will employ. It is a far more important
role than that of the formal instruction received.

This was only one of the many problems that our students had in

attempting to understand the operation of the text editor. We fouind
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that although students made many errors in learning to use the editor,
their errors were not random. Rather, they almost always were respond-
ing in terms of a plausible interpretation of what they were told. They
created models and made plausible inferences by analogy with situations
they already understood. We found that before we could really teach
them to understand the operation of the text editor in general, and the

* delete process in particular, a rather different approach was required.

To make Ed understandable, we needed to give the students analogi-
cal frameworks more appropriate than the ones they naturally used. The
difficulty, however. was that our students knew nothing of computers, so
either our model was going to be incomplete or we were going to have to
spend considerable time giving them a complete model. We discovered an
interesting solution to this dilemmna: give many different conceptual
models, each one simple, each making a different point.

We developed three distinct models which, together, seemed to offer
a reasonable account for the various aspects of a text editor. We
developed the "secretary" model, the "card file" model and the "tape
recorder" model. The secretarial model explains some aspects of Ed,
especially the overall format of intermixing commnands and textual
material. The difficulty with this model, however, was that our stu-
dents expected Ed to be as intelligent and understanding as a real
secretary would be. Hence, if they gave the append command, they then
fell prey to what we have called the append-mode trap. When they f in-
ished appending test, they would issue a command and expect Ed to carry
it out. Instead, Ed would treat the conmmand as another line of text and
simply add it to the file. But, because Ed often gets commands and fol-
lows them without giving any visible reaction, the students were some-
times unaware of what happened. Presumably, a real secretary able to
distinguish between the text being taken in dictation and the inter-
spersed comments about the format of the letter etc. Ed takes every-
thing literally and has to be told explicitly to suspend dictation and
register a command etc.

Therefore, the secretarial model has some virtues and some diffi-
culties. The tape recorder model helps students understand the append-
mode trap. Think of Ed as a tape recorder and the append command as
equivalent to recording on the tape recorder. Once a tape recorder has
been put into record mode, it faithfully records every sound that
reaches its microphones. The only way to stop the recording is to per-
form the explicit action that terminates the record mode (usually by
pushing the lever marked "stop").

The tape recorder model has the virtue of explaining about the
append-mode trap, but it is deficient in explaining the delete command.
The filing card model offers a good analogy for understanding the line-
oriented structure of the recorders-kept by Ed. Thus, the renumbering
of lines that takes place after a delete or append command is completed
is easy to interpret, given the model of the removal. or addition of
cards in the file. Clearly, the filing card model by itself does not
explain why the deleted line is not removed from the text the student

PF
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sees on the screen. but it does provide the proper conceptual framework.
An appropriate interpretation of the situation is that the contents of
the file cards are not visible to the user of Ed. Those are Ed's
private files. If you want to know what is in the files, you must ask
to see them with a "print" coummand.

The need for three separate models is reminiscent of the case of
teaching fractions. None of the "pure" models are perfect. Each has

* its own advantages and disadvantages. Apparently, what happens as we
become expert in a domain is that we become better and better at choos-
ing the appropriate model for the situation at hand. The success of
such models in teaching are, we believe, an essential clue to the normal
learning process. Students appear t~o create their own models if not
given any such guidance. A major pedogogical issue here is that a
student's own creations are often suprisingly good at providing an
explanation of what has been happening. Thus, neither student nor
instructor realizes how bad the model is, and it is not until the model
leads to some major difficulty that the hint of trouble develops.

Conclusions

We have adopted the view that much of our knowledge exists embedded
in specialized procedures which are employed in the interpretation
events in our environment. We call these packets schemata. One problem
with such a view is that it is difficult to see how such procedures can
be built up through experience. How can we create new schemata? We
have proposed that complex new procedures can be readily created by
modeling them on existing schemata and modifying them slightly. WP
believe that the typical course of such a learning process consists of
an initial creation of a new schema by modeling it on an existing
schema. This new scheme, however, is not perfect. Tt may occasionally
mispredict events and otherwise be inadequate. We then believe that the
newly acquired schema undergoes a process of refinement which we have~
dubbed tuning. We have not addressed the tuning problem in this paper.
Instead-we have focused on this process of modeling one schema on
another. We believe that this modeling process is properly called
learning by analogy.

We find examples of learning and teaching by analogy to be abso-
lutely ubiquitous. It appears that the usual learning sequence proceeds
as follows: Whenever one encounters a new situation they seek to inter-
pret it in terms of existing schemata. If they succeed, they understand
the situation and no new schemata need be created. ccasionally, how-

* ever, there are no existing schemata which can offer a satisfactory
account of a situation. In this case, we assume that the next best
schemata are found. Presumably, since no completely applicable schemata
existed, the schemata used to interpret the input had regions of
mismatch with the input situation. In some cases, essential features of
the interpreting schemata might not be present with other features in
their place. Presumably, such a situation serves as a trigger for the
creation of a new schema. The schema applied inappropriately to the
current situation can thus serve as the source domain and thus an a
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model from which to generate the new schema. The ways in which the
inappropriate schema is inappropriate give an initial set of differences
by which the new schema is different from the old. Importantly, those
characteristics of the new schema which are not contradicted by the new
situation are assumed to be carried over into the new domain, even
though they are not specifically apparent in the initial learning situa-
tion. It is through such carrying over that the analogical process is
both powerful and prone to error. Carrying over existing features of
existing schemata allow us to make inferences about the new situation
without explicit knowledge of the new situation. It allows us to learn
a good deal very quickly. It also can lead to error. If the analogy is
a good one, most of the inferences we make will be appropriate. On the
other hand, some of them will be incorrect. It is these incorrect
inferences which can allow us, as analysts, to see the features of the
source schemata in a subject's performance on a new domain.

There are. we believe, a number of instructional implications of
the view of learning we have been developing. In particular, It sug-
gests that the appropriate way to teach a domain is to provide the stu-
dent with a conceptual model which has the following properties:

(1) It should be based on a domain with which the student is very
knowledgeable and in which the student can reason readily.

112) The target domain and the source domain should differ by a
minimum number of specifiable dimensions.

(3) Operations which are natural within the target domain should
also be natural within the source domain.

(J4) Operations inappropriate within the target domain should also
be inappropriate within the source domain.

Typically, no single model will suffice for any reasonably complex sub-
ject matter. In such cases, a set of models, each with their specifi-
able domains of applicability, are often useful. Ultimately, several
schemata may be created for any given domain, each with their own,
built-in, context dependencies determining when each one is applicable.
Each of these schemata can be considered alternate conceptualizations of
the target domain.



Rumeihart & Norman Analogical Processes~33

References

Bobrow, D. G., & Norman, D. A. Some principles of memory schemata. In
D. G. Bobrow & A. M. Collins (Eds.), Representation and understand-
Lnj: Studies in Cognitive Science. New York: Academic Press, 1975.

Bott, R. A. A study of complex learning, theory and methodologies.
Unpublished doctoral dissertation, University of California, San
Diego, 1978.

Jackendoff, R. A system of semantic primitives. In R. Schank & B. L.
Nash-Webber (Eds.), Papers from the conference on theoretical issues
in natural language processing (TINLAP-1), Cambridge, Mass.: June

1975.

Moore, J., & Newell, A. How can MERLIN understand? In L. W. Gregg
(Ed.), Knowledge and cognition. Potomac, Md.: Erlbaum Associates.
1973.

Norman, D. A. Learning and teaching. In P. M. A. Rabbitt & S. Dornic
(Eds.), Attention and performance V. Proceedings of the Fifth Sym-
posium on Attention and Performance, Stockholm, Sweden. London:
Academic Press, 1975.

Norman, D. A. Notes toward a theory of complex learning. In A. M. Les-
gold, J. W. Pellegrino, S. Fokkema, & R. Glaser (Eds.), Cognitive
psychology and instruction. New York: Plenum Publishing Co., 1978.

Norman, D. A. Teaching, learning, and the representation of knowledge.
In R. E. Snow, P. A. Frederico, & W. E. Montague (Eds.), Aptitude,
learning, and instruction. Volume 2: Cognitive process analyses of
learning and problem solving. Hillsdale, N.J.: Lawrence Erlbaum
Associates, 1980.

Norman, D. A., & Gentner, D. R. Human learning and performance. Naval
Research Reviews, 1978, 31, (9), 9 - 19.

Norman, D. A., Gentner, D. R., & Stevens, A. L. Comments on learning:
Schemata and memory representation. In D. Klahr (Ed.), Cognition and
instruction. Hillsdale, N. J.: Erlbaum Associates, 1976.

Norman, D. A., Rumelhart, D. E., & the LNR Research Group. Explorations
in cognition. San Francisco: Freeman, 1975



Rumelhart & Norman Analogical Processes

34

Rumelhart, D. E., & Levin, J. A. A language comprehension system. In
D. A. Norman, D. E. Rumelhart, & The LNR Research Group, Explorations
in cognition. San Francisco: Freeman, 1975.

Rumelhart, D. E., & Norman, D. A. Active semantic networks as a model
of human memory. Proceedings of the Third International Joint Confer-
ence on Artificial Intelleencei. anford, California, 1973.

Rumelhart D E., & Norman, D. A. Accretion, tuning and restructur-
ing: Three modes of learning. In J. W. Cotton & R. Klatzky (Eds.)

Semantic factors in cognition. Hillsdale, New Jersey: Lawrence Erl-
baum Associates, 1978.

Rumelhart, D. E., & Ortony, A. The representation of knowledge in
memory. In R. C. Anderson, R. J. Spiro, & W. E. Montague (Eds.),
Schooling and the acquisition of knowledge. Hillsdale, N. J.: Erl
baum Associates, 1977.

Rumelhart, D. E. Schemata: The Building Blocks of Cognition In R. Spiro,
B. Bruce and W. Brewer (ads.), Theoretical Issues in Reading
Comprehension. Hillsdale, N.J. : Lawrence Erlbaum ssoC., In press.

Scragg, G. W. Answering questions about processes. In D. A. Norman, D.
E. Rumelhart, & The LNR Research Group, Explorations in cognition.

San Francisco: Freeman, 1975.

Wason, P., & Johnson-Laird, P.N. Psychology of reasoning: Structure
and content. Cambridge: Harvard University Press, 1972.

Winograd, T. Frame representations and the declarative-procedural con-
troversy. In D. G. Bobrow & A. M. Collins (Eds.), Representation and
understanding: Studies in cognitive science. New York: Academic
Pess 1797.

iI



Navy I Dr. George Moeller Mr. Arnold Rubenste n
Head, Human Factors Dpt. Naval Personnel Support Technology

DrNv Arthur Bachrach NCvtl Submarine Medical Research Lab Naval oaterval Command (08T24)
Environmental Stress Progr1m Center Groton, CO 0630 Room 1044. Crystal Plaza 5
Naval Medical Research Institute 2221 Jefferson Davis Highway
Dethesda, 20014 Dr. William Montague Arlington, VA 20360
CDR Thomas BerghageNavy Personnel R & CenterCDP Thmast Rerch ene r an Diego. CA 92152 1 Dr. Worth Scanland

SanDiegoC 1 Naval Health Research Center val Education and TrainingSan Diego. CA 92152 1 Commanding Officer Code N-5

U.S. Naval Amphibious School PAt, Pensacola, FL 32508
Dr. Robert Blnchard Coronado, CA 92155
Navy Personnel R&D Center Dr. Sam Schiflett SY 21Managment Support Department 1 Library Systems Engineering Test Directorate

San Diego, CA 92151 Naval Health Research Center U.S. Naval Air Test Center
P. 1 D Box 85122 Patuxent River, N 20670Dr. Jack R. Borating San Diego. CA 92138

Provost & Academic Dean 1 Dr. Robert G. Smith
U.S. Naval Postgraduate School 1 Naval Medical R&D Command Office of Chief of Naval Operations
Monterey. CA 93940 Code 44 OP-987H

National Noval Medical Center Washington, DO 20350
1 Dr. Robert Breaux Bthesda, MD 20014

Code N-711 1 Dr. Alfred F. Smode
NAVTRAEQUIPCEN 1 Ted M. I. Yellen Training Analysis & Evaluation Group
Orlando. FL 32813 Technical Information Office, Code 201 (TAEG)

Navy Personnel R&D Center Dept. of the Navy
Chief of Naval Education and Traininig San Diego, CA 92152 Orlando. FL 32813

Liason Office
Air Force Human Resource Laboratory 1 Library, Code P2O1L 1 Dr. Richard Srensen
Flying Training Division Navy Personnel R&D Center Navy Personnel R&D Center
Williams AFB. AZ 85224 San Diego, CA 92152 San Diego. CA 92152

Dr. Pat Federico 1 Technical Director 1 W. Gary Thomson
Navy Personnel R&D Center Navy Personnel R&D Center Naval Ocean Systems Center
San Diego, CA 92152 San Diego, CA 92152 Code 7132

Sun Diego. CA 92152
Dr. John Ford 6 Commanding Officer
Navy Personnel R&D Center Naval Research Laboratory 1 Dr. Robert Wisher
San Diego, CA 92152 Code 2627 Code 309

Washington. DC 20390 Navy Personnel R&D Center
Dr. Richard Gibson San Diego. CA 92152
Bureau of Medicine and Surgery 1 Psychologist
Code 3C13 ONR Branch Office I Mr John H. Wolfe
Navy Department Bldg 114, Section D Code P310
Washington. DC 20372 666 Sumer Street U. S. Navy Personnel Research andBoston, MA 02210 

Development Center
Dr. Henry M. Halff San Diego, CA 92152
Center for Human Information Processing. C-009 1 Psychologist
University of California. San Diego ONR Branch Office 1 Dr. Richard A. Pollak
La Jolla, CA 92093 536 S. Clark Street Academic Computing Center

Chicago, IL 60605 U.S. Naval Academy
LT Steven D. Harris. MSC, USN Annapolis, MD 21402
Code 6021 1 Office of Naval Research
Naval Air Development Center Code 437 Army
Warminster, Pennsylvania 18974 800 N. Quincy Street

Arlington, VA 22217 1 Technical Director
Dr. Patrick R. Harrison U.S. Army Research Institute for the
Psychology Course Direitor 1 Office of Naval Research Behavioral and Social Sciences
Leadership & Law Dept. (7b) Code 441 5001 Eisenhower Ave.Division of Professional Development 800 N. Quincy Street Alexandria, VA 22335

U.S. Naval Academy Arlington, CA 22217USAREUE 7th Army
Annapolis. MD 21402 5 Personnel & Training Research Programs ODCSOPS

Dr. Lloyd Hitchcock (Code 458) USAAREUE Director of GED
Human Factors Engineering Office of Naval Research APO New York 09403

Division (6022) Arlington, CA 22217
Naval Air Development Center 1 Mr. J. Barber

I Psychologist HOS. Department of the Army
Dr. Jim Hollan ONR Branch Office DAPE-ZBR
Code 304 1030 East Green St. Washington. DC 20310
Navy Personnel R & D Center Pasadena, CA 91101San Diego. CA 92152 1 Dr. Palph DusekOffice of the Chief of Naval Operations U.S. Army Research Institute
CDR Charles V. Hutchins Research Development & Studies Branch 5001 Eisenhower Ave.
Naval Air Systems Command Hq (OP-115) Alexandria. VA 22333
AIR-34OF Washington. DC 20350
Navy Department 1 Col. Frank Hart
Washington, DC 20361 1 Capt. Donald F. Parker, USN Army Research Institute for- the

Commanding Officer Behavioral & Social Sciences
Dr. Norman J. Kerr Navy Personnel R & D Center 5001 Eisenhower Ave.

Chief of Naval Technical Training San Diego, CA 92152 Alexandria, VA 22333
Naval Air Station Memphis (75)Mllington, M 38054 1 Lt. Frank C. Petho. MSC, USN (Ph.D) 1 Dr. Michael KaplanCode L51 

U.S. Army Research Institute
Dr. William L. Maloy Naval Aerospace Medical Research Lab. 5001 Eisenhower Avenue
Principal Civilian Advisor for Pensacola, FL 32508 Alexandria, VA 22333

Education and Training
Naval Training Coemand. Code OOA 1 Dr. Gary Poock 1 Dr. Milton S. Katz
Pensacola. FL 32508 perations Raeearoh Department Training Technical AreaCode 55PK U.S. Army Research Institute
Dr. Kneale Marshall Naval Postgraduate School 5001 Eisenhower Ave.
Scientific Advisor to DCNO(MPT) Monterey, CA 93940 Alexandria, VA 22333
OPOIT
Washinton. DC 20370 1 Roger W. Remington, Ph.D 1 Director

Code L52 U.S. Army Human Engineering Labs
Capt. Richard L. Martin, USN NAMIL Attn: DRXHE-e
rospective Commanding Officer Pensacola, FL 32508 Aberdeen Proving Ground, MD 21005USS Carl Vinson (CAN-70)

Newport News Shipbuilding and Drydoek Co. 1 Dr. Bernard Rimland (03B)
Newport New, VA 23607 Navy Personnel R & D Center

San Diego. CA 92152



Dr. Harold F. O'Neil, Jr. Other DOD I Dr. Michael Atwood
Attn: PERI-OK Science Applications Institute
Army Research Institute 12 Defense Technical Information Center 40 Denver Tech. Center West
5001 Eisenhower Ave. Cameron Station, Bldg. 5 7935 E. Prentice Ave.
Alexandria, VA 22333 Alexandria, VA 22314 Englewood. CO 80110

Attn: TC

LTC Michael Plummer 1 1 Psychological Research Unit
Chief, Leadership & Organizational 1 Dr. Craig I. Fields Dept. of Defense (Army Office)

Effectiveness Division Advanced Research Projects Agency Campbell Park Offices

Office or the Deputy Chief of Staff 1400 Wilson Blvd. Canberra ACT 2600, Australia

for Personnel Arlington, VA 22209

Dept. of the Army 1 Dr. R.A. Avner

Pentagon, Washington DC 20301 1 Dr. Dexter Fletcher University of Illinois
Advanced Research Projects Agency Computer-Based Educational Research Lab.

Dr. Robert Sasmor 1400 Wijlson Blvd. Urbana, IL 61801

U. S. Army Research Institute for the Arlington, VA 22209

Behavioral and Social Sciences 1 Dr. Alan Baddeley

5001 Eisenhower Avenue 1 Military Assistant for Training and Medical Research Council

Alexandria, VA 22333 Personnel Technology Applied Psychology Unit

Office of the Under Secretary of Defense 15 Chaucer Rd.

Air Force for Research & Engineering Cambridge CB2 2EF

Room 3D129, The Pentagon England

Air University Library Washington, DC 20301
AUL/LSE 76/443 1 Dr. Patricia Baggett
Maxwell AFB, AL 36112 Civil Govt Dept. of Psychology

University of Denver

Dr. Earl A. Alluisi I Dr. Joseph L. Young, Director University Park

HQ, AFHRL (AFSC) Memory & Cognitive Processes Denver, CO 80208

Brooks AFB, TX 78235 National Science Foundation

Washington, DC 20550 1 Ms. Carole A. Bagley
Dr. T. E. Cotterman Minnesota Educational Computing

AFHRL/ASR I Dr. Susan Chipman Consortium

Wright Patterson AFB Learning and Development 2354 Hidden Valley Lane
OH 454 3 National Institute of Education Stilluater, MN 55082

1200 19th Street NW
1 r. Genevieve Haddad Washington, DC 20208 1 Mr Avron Barr
Program Manager Department of Computer Science
Life Sciences Directorate 1 Mr. James M. Ferstl Stanford University

AFOSR Bureau of Training Stanford, CA 94305

Bolling AFB, DC 20332 U.S. Civil Service Commission

Washington, D.C. 20415 1 Dr. Jackson Beatty
I Dr. Ronald C. Hughes Department of Psychology

AFHRL/OTR 1 Dr. Joseph I. Lipson University of California
Williams AFB, AZ 85226 SEDR W-638 Los Angeles, CA 90024

National Science Foundation
Dr. Ross L. Morgan (AFHRL/LR) Washington. DC 20550 1 Dr. John Bergan
Wright -Patterson AFB School of Education

Ohio 45433 1 Dr. John Mays University of Arizona
National Institute of Education Tuscon AZ 85721

Dr. Marty Rockway (AFHRL/TT) 1200 19th Street NW

Lowry AF. Washington, DC 20208 1 Dr. Nicholas A. Bond
Colorado 80230 Dept. of Psychology

1 William J. McLaurin Sacramento State College
Dr. Frank Schufletowski Rm. 301. Internal Revenue Service 600 Jay Street
U.S. Air Force 2221 Jefferson Davis Highway Sacramento, CA 95819
ATC/XPTD Arlington, VA 22202

Randolph AFB, TX 78148 1 Dr. Lyle Bourne

1 Dr. Arthur Melmed Department of Psychology
2 3700 TCHTW/TIGH Stop 32 National Intitute of Education University of Colorado

Sheppard AFR. TX 76311 1200 19th Street NW Boulder, CO 80309
Washington, DC 20208

I Jack A. Thorp. Maj., USAF I Dr. Kenneth Bowles
Life Sciences Directorate I Dr. Andrew R. Molnar Institute for Information Sciences

AFOSR Science Education Dev. C-021
Bolling AFB. DC 20332 and Research University of California at San Diego

National Science Foundation La Jolla, CA 92037
Marines Washington. DC 20550

I Dr. John S. Brown
H. William Greenup 1 Dr. H. Wallace Sinalko XEROX Palo Alto Research Center
Education Advisor (E031) Program Director 3333 Coyote Road
Education Center. MCDEC Manpower Research and Advisory Services Palo Alto, CA 94304

Quantico, VA 22136 Smithsonian Institution
801 North Pitt Street 1 Dr. Bruce Buchanan

Major Howard Lngdon Alexandria, VA 22314 Department of Computer Science

Headquarters. Marine Corps Stanford Uiversity
OGTI 31 1 Dr. Frank Withrow Stanford Univrsit

Arlington Annex U. S. Office of Education Stanford. CA 91305

Columbia Pike at Arlington Ridge Rd. 400 Maryland Ave. SW

Arlington, VA 20380 Washington, DC 20202 1 Dr. C. Victor Bunderson
WICAT INC

Special Assistant for Marine Non Govt University Plaza Suite 10

Corps Matters 
1160 So. State St.

Code 100M I Dr. John R. Anderson Orem, UT 84057

Office of Naval Research Dept. of Psychology
800 N. Quincy St. Carnegie Mellon University Schoo Ect

Arlington, VA 22217 Pittsburgh, PA 15213 School of Education
University of Arizona

Dr. AL. Siafkosky I Anderson. Thomas H., Ph.D Tuscon, AZ 85721

Scientific Advisor (Code RD-I) Center for the Study of Reading 1 Dr. Pat Carpenter
HQ, U.S. Marine Corps 174 Children's Research Center De. Pychology

Washington, DC 20380 51 Gerty Drive Dept. of Psychology
Champaign, IL 61820 Carnegie-Mellon University

CoastGuard Pittsburgh, PA 15213

1 Dr. John Annett
I Chief. Psychological Reserch Branch Dept. of Psychology Dr. John . Carroll

U. S. Coast Guard (G-P-1/2/TPN2) University of Warwick Psychometric Lab

Washington, DC 20593 Coventry CV4 7AL Univ. of No. Carolina
England Dvie Kell 013A

Chapel Hill, C 27514



Charles Myers Library 
Dr. Alinda FriedmanLivingstone House Dept. of Psychology 1117 Via GoletaStratford University of Alberta Palos Verdes Estates. CA 90274Soanton oad Edmonton, AlbertaLondon El5 2LJ Canada TOG 2E9 1 Dr. Jill Larkin

Dept. of PsychologyDr. William Chase 1 Dr. R. Edward Geiselman Carnegie Mellon UniversityDept. of Psychology Pittsburgh, PA 15213
Carnegie Mellon University University of CaliforniaPittsburgh. PA 15213 Los Angeles, CA 90024 1 Dr. Alan LesgoldLearning R & D Center
Dr. Micheline Chi 1 Dr. Robert Glaser University of PittsburghLearning R & D Center LRDCUniversity of Pittsburgh University of Pittsburgh Pittsburgh, PA 152603939 O'Hara Street 3939 O'Hara St. Dr. Michael LevinePittsburgh. PA 15213 Pittsburgh, PA 15213 210 Education &'iding

Dr. William Clancey 1 Dr. Marvin D. Glock University of Illinois
Department of Computer Science 217 Stone Hall Champaign. IL 61820Stanford University 

Cornell UnlversityStanord CA9435 Itaca NY1483 1 Dr. Mark MillerStanford. CA 99305 Ithaca, NY 19853 Computer Science Laboratory
Dr. Allan M. Collins 1 Dr. Frank E. Gomer Texas Instruments, Inc.
Bolt Beranek & Newman, Inc. McDonnell Douglas Astronautics Co. Mal Station 371. P.O. Box 22593650 Moulton Street P. 0. Box 516 Dallas, TX 75265Cambridge, MA 02138 St. Louis, MO 63166 1 Dr. Allen MunroDr. Lynn A. Cooper 1 Dr. Daniel Gopher Behavioral Technology Laboratories1845 Elena Ave., Fourth FloorLRDC Industrial & Management Engineering Redondo Beach, CA 90277University of Pittsburgh Technion-Israel Institute of Technology3939 O'Hara St. 

HaifaPittsburgh, PA 15213 ISRAEL Dr. Seymour A. Papert
Massachusetts Institute of TechnologyThomas L. Crandell 1 Dr. James G. Greene Artificial Intelligence Lab35 Leslie Avenue LRDC 545 Technology SquareConklin, NY 13748 University of Pittsburgh Cambridge, MA 02139

3939 O'Hara Street 1 Dr. James A. PaulsonDr. Mereditih p. Crawford PtsugP 51
American Psychological Association Pittsburgh, PA 15213 Portland State University1200 17th Street, N.W. 1 Dr. Harold Hawkins PO. Box 751Washington, DC 20036 Department of Psychology Portland, OR 97207

University of Oregon 1 r. Luigi PetrulloDr. Kenneth B. Cross Eugene OR 97403 3 . dge tr eet
Anscapa Sciences, Inc. 2431 N. Edgewood Street
P.O. Drawer 0 1 Dr. Barbara Hayes-Roth Arlington. VA 22207Santa Barbara, CA 93102 The Rand Corporation1700 Main Street 1 Dr. Martha Poison
Dr. Emmanuel Donchin Sant onia, CA 9006 Department of PsychologyDepartment of Psychology University of ColoradoUniversity of illinois I Dr. Frederick Hayes-Roth Boulder, CO 80302Champaign, IL 61820 

The Rand Corporation
1700 Main Street pDr. Peter PolsonDr. Hubert Dreyfus Santa Monica, CA 90406 Dept. of Psychology

Department of Philosophy University of ColoradoUniversity of California I Dr. Dustin H. Heuston Boulder, CO 80309Berkely, CA 99720 Wicat, Inc. 1 Dr. Steven E. Poltrock
Box 986LCOL J. C. Eggenberger Orem, UT 84057 Dept. of Psychology

Directorate of Personnel Applied Research University of DenverNational Defence HQ 1 Glenda Greenwald, Ed. Denver, CO 80208101 Colonel by Drive "Human Intelligence Newsletter- Dr. Diane M. Ramsey-KleeOttawa, Canada K1A OK2 P.O. Box 1163
Birmingham, MI 48012 R-K Research & System DesignERIC Facility-Acquisitions 3947 Ridgemont Drive4833 Rugby Avenue I Dr. Earl Hunt Malibu, CA 90265Bethesda. MD 20019 Dept. Of Psychology 1 Dr. Fred Reif
University of Washington S eSAM EDr. A. J. Eschenbrenner Seattle, WA 98015 SESAME

Dept. E422, Bldg. 81 c/o Physics Dept,McDonnell Douglas Astronautics CO. I Dr. James R. Hoffman University of CaliforniaP.O.Box 516 Department of Psychology Berkely, CA 94720
St. Louis, MO 63166 University of Delaware Dr. Andrew M. Rose
Dr.Newark, DE 19711 American Institue for Research
Dept. of Computer Science 1 Dr. Steven W. Keel. 1055 Thomas Jefferson St. NW
Stanford University Dept. of Psychology Washington, DC 20007Stanford, CA 99305 University of Colorado 1 Dr. Ernt Z. Rothkopf
MrB Wallace Feurzeig Bell Laboratories
Bolt Beranek & Newman, Inc. 1 Dr. David Kieres 600 Mountain Ave.50 Moulton St. Dept. of Psychology Hurray Hill, NJ 07979
Cambridge, MA 02138 University of ArizonaTuson, AZ 85721 1 Dr. Walter Schneider

Dr. Victor Fields Dept. of Psychology
Dept. of Psychology 1 Dr. Kenneth A. Klivington University o Illinois
Montgomery College Program Officer Champaign. IL 61820
Rockville, MD 20850 Alfred P. Sloan Foundation I r. Alan Schoenfeld

630 Fifth Ave.Dr. Edwin A. Fleishman New York, NY 10111 Dept. of MathematiCsAdvanced Research Resources Organ, H1ililton college
Suite 9o It Dr. tonie Kn1rr Clinton, NY 13323UA30 East West Highway Litton-Melloni
Washington, DC 20014 Box 1286 1 Dr. Robert J. Seidel

Springfield, VA 221S1 Instructional Technology GroupDr. John D. Folley JrS HUMRRO
Applied r. ences Associates Inc. Dr. Stephn Kolyn 300 N. Washington St.Valencia. PA 16059 Hrvrd U versity Alesandria, VA 22314

Department of Psychology Ccittee on Cognitive Research
Dr. John R. Frederlhsen 33 Kirkland St. Cmt* nCgiieRsac
Bolt Beranek A Newman Cambridge. MA 02138 c/o Dr. Lonnie N. Sherrod
50 Moulton Street Social Science Research Council
CaMrige, MA 021386e Third Ave.('Cambridge, MA 02138 Now York, NY 10016



I Robert S. SieglerAssociate Professor 1 Dr. j. Arthur WoodwardCa e resoUnivrsity 
Department of PsychologyCaregle-Neolon University 
University of California

Dept. of Psychology 
Los Alngeles. CA 9002k

Schenley Park
Pittsburgh, PA 15213 

1 Dr. Karl Zinn
1 Dr. Robert Sith Center for Research on LearningDepartment of Computer Science University of MichiganRutgers UniversitySNew Brunswick, Ann Aror903410

1 Dr. Richard now 1 Charles Myers LibrarySchool of Education Livingstone HouseStanford University Livingstone Road
Stanford, CA 94305 Stratford

London E15 2LJ
1 Dr. Robert Sternberg ENGLAND

Dept. of Psychology
I Yale University

BOx 11A, Yale Station
New Haven, CT 06520

1 Dr. Albert Stevens

Bolt Beranek & Newman. Inc.' 50 Moulton Street

Cambridge. MA 02138

Dr. Thmas G. Sticht
Director. Basic Skills DivisionHUMRRO

1O0 N- Washington Street
Alexandria, VA 22314

Dr. Patrick Suppes
Institute for Mathematical Studies in

the Social Sciences
Stanford University
Stanford, CA 94305

Dr. Kikumi Tatsuoka
Computer Based Education Research

Laboratory
52 Engineering Research LaboratoryUniversity of III inoi a

Urbana, IL 61801

Dr. John Thomas
IBM Thomas J. Watson Research CenterP.C. Box 218Yorktown Heights. NY 10598

Dr. Perry Thorndyke

The Rand Corp.
1700 Main St.

Santa Monica, CA 90406

Dr. Douglas Towne
University of So. Calif.
Behavior

3l Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

Dr. Benton J. Underwood
Dept. Of Psychology
Northwestern University
Evanston, IL 60201

Dr. Phyllis WeaverGraduate School of education
Harvard University

200 Larsen Hall, Appian WayCambridge. MA W 38

Dr. David J. Weiss
R560 Elliott Hall

University of Minnesota
75 E. River Rd.
Minneapolis. MN 55455

Dr. ershon Weltean
Perceptronics Inc.
6271 Variel Ave.
Woodland Hills, CA 91367

Dr. Ieigh T. Wescourt
Informatiom Sciences Dept.
The Rand Corporation
1700 Main St.
Santa Monlsa. CA 90406

fDr. Susan E. Whitely
Psychology Dept.
University of Kansas
Lawrence, Kansas 66044

Dr. Christopher Wickens
Dept. of Psychology
University of Illinois
Champaign. TL 61820




